iRay

# Venu1717

FPD Medical X-ray Radiography Flat Panel Detector

## **User's Manual**



## Shanghai iRay Technology Ltd.

ADDRESS: 2F, Building 7, No. 590, Ruiqing Road, Zhangjiang East, Pudong New Area, Shanghai 201201, China POSTAL CODE: 201201 TEL: +86-21-50720560 FAX: +86-21-50720561 DATE: 2012-09 Version: V1.1

## To customers



Thank you for purchasing iRay's FPD Medical X-ray Radiography Flat Panel Detector (hereafter refers to as Venu1717). This User's Manual explains the general usage of the detector and peripheral equipment. Before using this product, please read this manual thoroughly. Any abnormalities or malfunction or body harms caused by violations of the user's manual will not be responsible by our company, nor any warranties will be made by iRay.

#### Important information on usage and management of equipment

- 1. Only a physician or a legally certified operator is allowed to use this product.
- 2. The equipment should be maintained in a safe and operable condition by maintenance personnel.
- 3. Use only computers and image display monitors complying with IEC 60601-1 or IEC 60950-1, and under a system configuration comply with IEC 60601-1-1. For details, consult our sales representative or local iRay dealer.
- 4. User only the dedicated cables. Do not use any cables other than those supplied with this product.
- 5. Opening the detector by the unauthorized personnel of our company is forbidden.
- 6. Prevent the liquid or electrical conductive substance entering into the detector.
- 7. The detector should not be used in the circumstance with flammable gas or corrosive gas.
- 8. The detector with radiation protection in accordance with IEC 60601-1-3.

#### Disclaimer

- 1. In no event shall iRay be liable for any damage or loss arising from fire, earthquake, any action or accident by a third party, any intentional or negligent action by user, any trial usage, or other usage under abnormal conditions.
- 2. Roentgenography, image processing, image reading, and image data storage must be performed in accordance with the laws of the country or region in which the product is being used. The user is responsible for maintaining the privacy of image data.
- 3. In no event shall iRay be liable for personal physical harm or property damage that is sustained when the instructions are not followed or the product is misused.

Manufactured by iRay Technology. 1 Specifications subject to change without notice

- 4. It is the responsibility of the attending physicians to provide medical care services. iRay will not be liable for faulty diagnoses.
- 5. In no event shall iRay be liable for direct or indirect consequential damages arising from the use or unavailability of this product. iRay shall not be liable for loss of image for any reason.
- 6. In no event shall iRay be liable for any damage arising from moving, alteration, inspection or repair by a person other than authorized service engineers.
- 7. Specifications, composition, and appearance of this product may change without prior notice.

#### About CE

Venu1717 is according to the standard of IEC 60601-1-1-2, Electromagnetic Compatibility –Medical Electrical Instrument.

The detector can connect to public mains as defined in CISPR 11 (the class defines GROUP 1 Class B).

According to CE testing, the test standards see the chapter V: Regulatory information. If you want to know more information, please connect to the product or iRay's authorized agent.

#### Note on installation

Ϋ́ Request your sales representative or local iRay dealer to install this product.

#### Note on disposal of this product

Ŷ Disposal of this product in an unlawful manner may have a negative impact on health and on the environment. When disposing of this product, therefore, be absolutely sure to follow the procedure which is in conformity with the laws and regulations applicable in your area.



European Union (and EEA) only.

This symbol indicates that this product is not be disposed of with your household waste, according to the WEEE Directive (2002/96/EC) and your national law. This product should be handed over to a designated collection point, e.g., on an authorized one-for-one basis when you buy a new similar product or to an authorized collection site for recycling waste electrical and electronic equipment (EEE). Improper handling of this type of waste could have a possible negative impact on the environment and human health due to potentially hazardous substances that are generally associated with EEE. At the same time, your cooperation in the correct disposal of this product will contribute to the effective usage of natural resources. For more information about where you can drop off your waste equipment for recycling, please contact your local city office, waste authority, approved WEEE scheme or your household waste disposal service.

For more information regarding return and recycling of WEEE products, please visit <u>www.iray-tech.com</u>.

#### **About Service Information**

- Ϋ́ Refer instrument servicing to iRay or iRay's authorized service personnel only.
- Ϋ́ iRay or iRay's authorized agents provide telephone service and other communication services. Local services are decided by fact.
- $\ddot{Y}$  Some services need pay for service expense except components expense.
- **Ÿ** Any unauthorized attempt to repair instrument under warranty voids that warranty.
- Ϋ́ Client must offer product's serial number.
- **Ÿ** Under warranty, some damages don't need take any service expense and components expense because of unartificial factors.
- Ÿ Under warranty, some damages only need take components expense and need not take any service expense because of artificialness.
- Ϋ́ Outside warranty, some damages need take service expense and components expense because of artificialness.
- Ϋ Boards and components that come from repair belong to manufacturer all and singular.
- Ÿ During the way which be sent to iRay or iRay's authorized agent for examination or repair, the customers should take the responsibility if the instruments damage because of transportation or unartificial factors.

#### Symbols

The list of the symbols used in this instrument is as follows:



Symbol for "caution, consult accompanying documents".

## CE

CE mark, when a device has been past CE test, we must put the CE mark on the device. And the CE number can be after the symbol.



a. This symbol shall be accompanied by the manufacturer's serial number.The serial number shall be after or below the symbol, adjacent to it.b. The relative size of the symbol and the serial number are not specified.c. So far our product serial number is made of seven digits, two digits for the year and two digits for the month and three digits for sequence number.So the serial number could be show the date of made.

## -----

a. The symbol shall be accompanied by the name and the address of the manufacturer, adjacent to the symbol. The address is not required with the symbol on an immediate container as specified in EN375 AND EN376, except when the immediate container is also the outer container.

b. The relative size of the symbol and the name and address is not specified.

#### EC REP

a. The symbol shall be accompanied by the name and the address of the authorized representative in the European Community, adjacent to the symbol. The address is not required with the symbol on an immediate container as specified in EN375 AND EN376, except when the immediate container is also the outer container.

b. The relative size of the symbol and the name and address is not specified.



Symbol for "consult instructions for use", "consult operating instructions".



Equipotentiality, to identify the terminals which, when connected together, bring the various parts of an equipment or of a system to the same potential. Not necessarily being the earth (ground) potential. e.g. for local bonding.



Type B applied part, applied part complying with the specified requirements of EN IEC60601-1 to provide protection against electric shock, particularly regarding allowable patient leakage current and patient auxiliary current.

"ON" ( power )

"OFF" ( power )

Protective Earth Conductor ( ground )

#### Trademarks

Ÿ The iRay name and iRay logo are registered trademarks of Shanghai iRay Technology Ltd.

#### Copyright

- Ϋ́ All rights reserved.
- **Ÿ** Under copyright laws, this manual may not be reproduced, in whole or in part, without the written permission of iRay.

## Contents

| CONTENTS                                           | 7    |
|----------------------------------------------------|------|
| SAFETY NOTICES                                     | 9    |
| 1. CHAPTER I SAFETY INFORMATION                    | . 10 |
| 1.1 Safety precautions                             | . 10 |
| 1.2 Notes for using the equipment                  | . 15 |
| BEFORE EXPOSURE                                    | . 15 |
| DURING EXPOSURE                                    | . 15 |
| CLEANING                                           | . 15 |
| 2. CHAPTER II GENERAL DESCRIPTION                  | . 16 |
| 2.1 Scope                                          | . 16 |
| 2.2 Model                                          | . 17 |
| 2.3 CHARACTERISTIC                                 | . 18 |
| 2.4 INTENDED USE                                   | . 18 |
| 2.5 STANDARD CONFIGURATION                         | . 18 |
| 2.6 MAIN SPECIFICATIONS                            | . 19 |
| 2.7 CLASSIFICATION OF THE EQUIPMENT                | . 21 |
| 3.CHAPTER III INSTALLATION AND OPERATION           | . 22 |
| 3.1 QUICK START                                    | . 22 |
| 3.2 First Image Acquisition                        | . 22 |
| 3.3 FPD Config                                     | . 24 |
| 3.4 GAIN CORRECTION                                | . 25 |
| 3.5 DEFECT CALIBRATION                             | . 27 |
| 3.6 ACQUIRE CALIBRATED IMAGE                       | . 27 |
| 4. CHAPTER IV CONTROL INTERFACE                    | . 28 |
| 4.1 AC INPUT                                       | . 28 |
| 4.2 Serial Port                                    | . 28 |
| 4.3 GIGABIT ETHERNET PORT                          | . 29 |
| 4.4 HVG INTERFACE                                  | . 29 |
| 4.5 T-AEC Module                                   | . 30 |
| 4.6 X-RAY IMAGE ACQUISITION                        | . 30 |
| 4.7 Event                                          | . 36 |
| 5.CHAPTER V REGULATORY INFORMATION                 | . 38 |
| 5.1 Medical equipment safety standards             | . 38 |
| 5.2 GUIDANCE AND MANUFACTURE'S DECLARATION FOR EMC | . 39 |
| 6.CHAPTER VI IMAGING SOFTWARE SDK                  | . 44 |

| 6.1Description of Library (IrayAcquireLib.lib) | 44<br>49 |
|------------------------------------------------|----------|
| 6.3 Demo illustration                          | 70       |
| 7.CHAPTER VII SERVICE INFORMATION              | 72       |
| PRODUCT LIFETIME                               | 72       |
| REGULAR INSPECTION AND MAINTENANCE             | 72       |
| REPAIR                                         | 72       |
| REPLACEMENT PARTS SUPPORT                      | 72       |
| APPENDIX A INSTALLATION OF SDK                 | 73       |
| APPENDIX B INFORMATION OF MANUFACTURES         |          |

## **Safety notices**

The following safety notices are used to emphasize certain safety instructions. This manual uses the caution symbol along with a caution message.



This notice is used to identify conditions under which improper use of the product may cause death or serious personal injury.



This notice is used to identify conditions under which improper use of the product may cause minor personal injury.



This notice is used to identify conditions under which improper use of the product may cause property damage.



This is used to indicate a prohibited operation.



This is used to indicate an action that must be performed.



This is used to indicate important operations and restrictions. Be sure to read this notice to prevent property damage or malfunction.

(i) Information

This is used to indicate operations for reference and complementary information. Users are recommended to read this notice.

## 1. Chapter I Safety Information

## 1.1 Safety precautions

Follow these safeguards and properly use the equipment to prevent injury and damage to any equipment/data.

|            | WARNING                                                                                |
|------------|----------------------------------------------------------------------------------------|
| Installati | on and environment of use                                                              |
| Ÿ          | Do not use or store the equipment near flammable chemicals such as alcohol,            |
| 0          | thinner, benzene, etc.                                                                 |
| Prohibited | If chemicals are spilled or evaporate, it may result in fire or electric shock through |
|            | contact with electric parts inside the equipment. Also, some disinfectants are         |
|            | flammable. Be sure to take care when using them.                                       |
| Ÿ          | Do not connect the equipment with anything other than specified.                       |
|            | Doing so may result in fire or electric shock.                                         |
| Power su   | pply                                                                                   |
| Ϋ́         | Do not operate the equipment using any type of power supply other than the one         |
| $\odot$    | indicated on the rating lable.                                                         |
| Prohibited | Otherwise, it may result in fire or electric shock.                                    |
| Ÿ          | Do not handle the equipment with wet hands.                                            |
|            | You may experience an electric shock that could result in death or serious injury.     |
| Ÿ          | Do not place heavy object such as medical equipment on cables and cords, or do         |
|            | not pull, bend, bundle, or step on them to prevent their sheath from being             |
|            | damaged, and do not alter them neither.                                                |
|            | Doing so many damage the cords which could result in fire or electric shock.           |
| Ÿ          | Do not supply power to more than one piece of equipment using the same AC              |
|            | outlet.                                                                                |
|            | Doing so may result in fire or electric shock.                                         |
| Ÿ          | Do not turn ON the system power when condensation has formed on the                    |
|            | equipment.                                                                             |
|            | Doing so may result in fire or electric shock.                                         |
| Ÿ          | Do not connect a multiple portable socket-outlet or extension cord to the system.      |
|            | Doing so may result in fire or electric shock.                                         |
| Ÿ          | To avoid the risk of electric shock, this equipment must only be connected to a        |
|            | supply mains with protective earth.                                                    |
|            | Not doing so may result in fire or electric shock.                                     |
|            |                                                                                        |

Securely plug the power cord into the AC outlet.

If contact failure occurs, or if metal objects come into contact with the exposed metal prongs of the plug, fire or electric shock may result.

Ϋ Be sure to turn OFF the power to each piece of equipment before connecting or disconnecting the cords.

Otherwise, you may get an electric shock that could result in death or serious injury.

Be sure to hold the plug or connector to disconnect the cord.If you pull the cord, the core wire may be damaged, resulting in fire or electric shock.

#### 

Ÿ

If the detector is intended to assemble mobile DR system, the integrated power and data cable must be ordered not longer than 2m, and the cable must be collected in the fixed position, not do this it may cause the DR system be toppled.

| WARNING         |                                                                                                   |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Handling        |                                                                                                   |  |  |  |  |
| Ϋ́              | Never disassemble or modify the equipment.                                                        |  |  |  |  |
| 0               | Doing so may result in fried or electric shock. Also, since the equipment incorporates            |  |  |  |  |
| Prohibited      | parts that may cause electric shock as well as other hazardous parts, touching them               |  |  |  |  |
|                 | may cause death or serious injury.                                                                |  |  |  |  |
| Ÿ               | Do not place anything on top of the equipment.                                                    |  |  |  |  |
|                 | The object may fall and cause an injury. Also, if metal objects such an needles or clips          |  |  |  |  |
|                 | fall into the equipment, or if liquid is spilled, it may result in fire or electric shock.        |  |  |  |  |
| Ÿ               | Do not hit or drop the equipment .                                                                |  |  |  |  |
| •               | The equipment may be damaged if it receives a strong jolt, which may result in fire or            |  |  |  |  |
|                 | electric shock if the equipment is used without being renaired                                    |  |  |  |  |
|                 | electric shock if the equipment is used without being reparted.                                   |  |  |  |  |
| Ÿ               | Have the nationt take a fixed nosture and do not let the nationt touch parts                      |  |  |  |  |
|                 | unnecessarily                                                                                     |  |  |  |  |
| 0               | If the patient touches connectors or switches it may result in electric shock or                  |  |  |  |  |
| <b>v</b>        | malfunction of the equipment                                                                      |  |  |  |  |
|                 | manufiction of the equipment.                                                                     |  |  |  |  |
| When a r        | problem occurs                                                                                    |  |  |  |  |
| γ, non α Γ<br>Ϋ | Should any of the following occur, immediately turn OFF the power to each piece                   |  |  |  |  |
|                 | of equipment, unplug the power cord from the AC outlet, and contact your sales                    |  |  |  |  |
|                 | representative or local iRay dealer:                                                              |  |  |  |  |
| •               | $\dot{\mathbf{Y}}$ When there is smoke, an odd smell or abnormal sound                            |  |  |  |  |
|                 | $\ddot{\mathbf{Y}}$ When liquid has been spilled into the equipment or a metal object has entered |  |  |  |  |
|                 | through an opening                                                                                |  |  |  |  |
|                 | $\ddot{\mathbf{Y}}$ When the equipment has been dropped and is damaged                            |  |  |  |  |
|                 | · · · · · · · · · · · · · · · · · · ·                                                             |  |  |  |  |
| Maintena        | ance and inspection                                                                               |  |  |  |  |
| ÿ               | When the equipment is going to be cleaned, be sure to turn OFF the power each                     |  |  |  |  |
| 0               | equipment, and unplug the power cord from the AC outlet. Never use alcohol.                       |  |  |  |  |
| Prohibitard     | benzene, thinner or any other flammable cleaning agent.                                           |  |  |  |  |
|                 | Otherwise, it may result in fire or electric shock.                                               |  |  |  |  |
|                 |                                                                                                   |  |  |  |  |
| Ÿ               | Clean the plug of the power cord periodically by unplugging it from the AC outlet                 |  |  |  |  |
|                 | and removing dust or dirt from the plug, its periphery and AC outlet with a dry                   |  |  |  |  |
| •               | cloth.                                                                                            |  |  |  |  |
| U               | If the cord is kept plugged in for a long time in a dusty, humid or sooty place, dust             |  |  |  |  |
|                 | around the plug will attract moisture, and this could cause insulation failure that               |  |  |  |  |
|                 | could result in a fire.                                                                           |  |  |  |  |
| Ÿ               | For safety reasons, be sure to turn OFF the power to each piece of equipment                      |  |  |  |  |
|                 | when the inspections indicated in this manual are going to be performed.                          |  |  |  |  |
|                 | Otherwise, electric shocks may occur.                                                             |  |  |  |  |
|                 | -                                                                                                 |  |  |  |  |





#### 1.2 Notes for using the equipment

When using the equipment, take the following precautions. Otherwise, problems may occur and the equipment may not function correctly.

#### **Before exposure**

- $\ddot{Y}$  Be sure to check the equipment daily and confirm that it works properly.
- Ÿ Sudden heating of the room in cold areas will cause condensation to form on the equipment. In this case, wait until the condensation evaporates before performing an exposure. If the equipment is used while condensation is formed on it, problems may occur in the quality of captured images.

When an air-conditioner is used, be sure to raise/lower the temperature gradually so that a difference in temperature in the room and in the equipment does not occur, to prevent condensation.

#### **During exposure**

Ϋ Do not move the power, Cameralink, Ethernet or serial cables during exposure. Doing so may causing image noise or artifacts, even error image.

#### Cleaning

- $\ddot{Y}$  Do not spray the detector directly with disinfectants or detergents.
- Ϋ Wipe it with a cloth slightly damped with a neutral detergent. Do not use solvents such as alcohol, thinner or benzene. Doing so may damage the surface of the equipment.

## 2. Chapter II General Description

Venu1717<sup>®</sup> is an advanced digital radiographic flat panel detector based on amorphous silicon thin-film transistor technologies. Venu1717 is a member of iRay's Venu detector family for static x-ray imaging. Venu1717 is designed to provide the highest quality of radiographic image. Venu1717 contains an active matrix of  $3072 \times 3072$  pixels with  $139 \mu$ m pitch. Users can select GOS(Gadolinium Sulfoxylate) or CsI (Caesium Iodide) as the scintillation screen. Cameralink and Gigabit Ethernet interfaces are both available for data transfer from the detector to a computer. In addition, Venu1717 is equipped with iRay's unique sync-shot, AEC and binning functions to meet users' various needs.

Along with the detector, iRay also provides a Microsoft Visual Studio (2008) library **IrayAcquireLib.lib**, and a demo program iDemo<sup>®</sup> and its source code to assist users' integration of the detector into their existing DR system. The library **IrayAcquireLib.lib** contains functions for image acquisition and detector configuration. iDemo demonstrates the usage of **IrayAcquireLib.lib** and provides a simple user interface to acquire and preview x-ray images.

#### 2.1 Scope

This manual contains information about the iRay Venu1717 detector. All operators must read and understand this manual before using the detector. All information in this manual, including the illustrations, is based on detector model. If your detector configuration lacks any of these options, then some information in this manual does not apply.

#### 2.2 Model



| No. | Model  | Brand Name | Type of Use            | useful area<br>(cm <sup>2</sup> ) | Pixel matrix | Pixel <b>Pitch</b><br>(µm) |  |
|-----|--------|------------|------------------------|-----------------------------------|--------------|----------------------------|--|
| 1   | FPD1F  | Venu1717F  | Fixed                  |                                   |              |                            |  |
| 2   | FPD1M  | Venu1717M  | Moveable               |                                   |              |                            |  |
| 3   | FPD1MU | Venu1717MU | Moveable<br>updating   | 42.7×42.7                         | 3072×3072    | 139                        |  |
| 4   | FPD1C  | Venu1717C  | Cassette               |                                   |              |                            |  |
| 5   | FPD1CU | Venu1717CU | Cassette updating      |                                   |              | l                          |  |
| 6   | FPD1D  | Venu1717D  | High-speed             |                                   |              |                            |  |
| 7   | FPD2P  | Venu1417P  | Portable               |                                   |              |                            |  |
| 8   | FPD2PU | Venu1417PU | Portable updating      |                                   |              |                            |  |
| 9   | FPD2D  | Venu1417D  | High-speed             |                                   | 2204 2000    | 150                        |  |
| 10  | FPD2DU | Venu1417DU | High-speed<br>updating | 34.6×42.0                         | 2304×2800    | 150                        |  |
| 11  | FPD2C  | Venu1417C  | Cassette               |                                   |              |                            |  |
| 12  | FPD2CU | Venu1417CU | Cassette updating      |                                   |              |                            |  |

Specification of FPD serial Flat Panel Detector:

#### 2.3 Characteristic

- Ϋ́ Fixed static Flat Panel Detector used for general radiography.
- Ϋ Sync-Shot exposure trigger and/or Automatic Exposure Control.
- Ϋ́ Cameralink and Gigabit Internet interface.
- Ϋ GOS or CsI scintillation screen.
- Ϋ Support multiple type of Pixel binning mode.
- $\ddot{Y}$  Capable for tomosynthesis and energy subtraction (applied with only –D model).

#### 2.4 Intended use

This device provides digital X-ray imaging for diagnosis of disease, injury, or any applicable health problem. The image is obtained as the result of imaging X-ray passing through the human body and being detected by the device. This device is not intended for mammography or dental applications.

#### For DR System Maker

iRay will provide detector and software support for integration of system. If the detector is intended to assemble mobile DR system, the integrated power and data cable must be ordered not longer than 2m, and the cable must be put in the fixed position, not do this it may cause the DR system be toppled.

#### For Distributor

iRay will provide detector and software support for upgrading of system.

#### 2.5 Standard configuration

The Venu1717 detector comes with a power supply which connects to 100-240 AC outlet and generates DC voltages needed by the detector.

Venu1717 subtypes ending with suffix -I or -A are equipped with internal x-ray sensors which automatically detect the x-ray and synchronize image acquisition with the x-ray exposure, therefore do not need to be connected to high-voltage generator of the user's DR system. Venu1717 subtypes ending with the suffix -m are not equipped with any internal x-ray sensor and need to be connected to the user's high-voltage

generator through a supplied cable for synchronization between image acquisition and x-ray exposure.

The detector shall be connected to a computer through the Ethernet cable for data transfer. There is also a serial cable connecting the detector to the computer for detector configuration and acquisition commands.







## 2.7 Classification of the Equipment

The equipment and its applied part are suitable for the following classification:

- Ÿ The type of protection against electric shock: Class I Equipment
- Ϋ́ <u>The degree of protection against electric shock: Type B</u>
- Υ <u>The degree of protection against ingress of water as detailed in the current edition</u> of IEC 529: unclassified
- Not suitable for use in the presence of a FLAMMABLE ANAESTHETIC
  MIXTURE WITH AIR or WITH OXYGEN OR NITROUS OXIDE
- Ϋ́ <u>The mode of operation: Continuous operation with intermittent loading</u>

21

## **3.**Chapter III Installation and Operation

The Venu1717 detector must use the specified power supply and shall be connected with the grounding wires.

- 1. Turn on the computer.
- 2. Install a Gigabit Ethernet card in the computer if none has been installed.
- 3. Install WinPcap 4.1.2 for the Gigabit Ethernet interface.
- 4. Connect a ground cable and the power supply cable to the detector.
- 5. Connect the power supply to a 100-240V AC outlet.
- 6. Install the control box with interface wires to PC, High-Voltage Generator and detector.
- 7. Turn on the switch of power supply and the green indicator of the detector shall be lit up.
- 8. Run one image acquisition software such as iStart or iDemo.

#### 3.1 Quick Start

Before using the detector, user must read the appendix A for details of SDK installation. Then user can use the Quick Start software **iStart**<sup>®</sup> for image acquisition.

#### 3.2 First Image Acquisition

iRay provides a Microsoft Visual Studio (2008) library IrayAcquireLib.lib, and a demo program iDemo<sup>®</sup> and its source code to assist the users' integration of the detector into their existing DR system. The library IrayAcquireLib.lib contains functions for image acquisition and detector configuration. iDemo demonstrates the usage of IrayAcquireLib.lib and provides a simple user interface to acquire and preview x-ray images.

The user can start the iDemo program by double click on the executable file iDemo.exe included in the CD ROM. iDemo loads the acquisition driver and sends the acquisition commands to the detector through a uart port. The image data acquired by Venu1717 will be sent through the Gigabit Ethernet cable to the computer. iDemo

can perform offset, gain and defect correction on the image and then display the image on the computer screen.



As shown in the above figure, on the right buttons are classified into 5 classes.

(1) Control class: "Start" button to initialize the Gigabit Ethernet driver and COM port. The user needs to select the Gigabit Ethernet adapter that has been connected to Venu1717 with "show" option selected in "start window" class.

| Detector A         |                                                                                                                |                                   |   |
|--------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|---|
| Serial ports list: |                                                                                                                |                                   |   |
| CUPIL              | -                                                                                                              |                                   |   |
| Notwork adaptor I  | bb                                                                                                             |                                   |   |
|                    | and a manufacture of the second s | CARLENDER AND COMPANY AND COMPANY | - |
| PERSONAL PLUSION   | анту солова довисацият_фонсе                                                                                   |                                   |   |
|                    |                                                                                                                |                                   |   |
| Detector D         |                                                                                                                |                                   |   |
| Serial ports list: |                                                                                                                |                                   |   |
|                    |                                                                                                                |                                   |   |
|                    | <u> </u>                                                                                                       |                                   |   |
| Network adapter    | st                                                                                                             |                                   |   |
|                    |                                                                                                                |                                   | - |
| 1                  |                                                                                                                |                                   |   |
|                    |                                                                                                                |                                   |   |
|                    |                                                                                                                |                                   |   |
|                    |                                                                                                                |                                   |   |
|                    | Ok.                                                                                                            | Cancel                            |   |
|                    |                                                                                                                |                                   |   |
|                    |                                                                                                                |                                   |   |

23

"Stop" button to unload the Gigabit Ethernet driver.

After clicking OK, iDemo will test the linking speed of the device.

- (2) Acquire class: "**Prepare**" button to start the scrubbing process of detector. "**Acquire**" button to acquire an image from the detector.
- (3) Other class: "Config" button to read, write or reset the settings of detector. "Save" button to save the image acquired from the detector with DICOM format.
- (4) GBE Window class: "Set" button to set the user selected Gigabit Ethernet device and COM port as the default setting. Unselect the "Show" option will avoid GBE and COM selection window in step (1) popping up. Idemo will load the default setting.
- (5) Correction class: iDemo provide correction wizard to generate the offset, gain and defect correction. For offset correction, user can select no offset, pre-offset or post-offset mode.

#### 3.3 FPD Config

Click"config" button to read or write FPD configuration through COM port.

| Detector Coringarad |                 | oundi coningaradori |       |               |
|---------------------|-----------------|---------------------|-------|---------------|
| Main Version:       | 3.3.18          | Image file name —   |       |               |
| Read Version:       | 3.1.5 R         |                     |       | 🔽 Auto naming |
| Product type:       | 1               | test.dcm            |       | Browse        |
| VT:                 | 1.68 V          |                     |       |               |
| PGA:                | 5               | Read INFO           |       |               |
| Time Span:          | 1800 ms         | Read Temp:          | 0.0   | ℃ Read Temp   |
| Acquire Delay:      | 0 ms            | Read Humidity:      | 0.0   |               |
| Integrate:          | 100 µs          | SN:                 |       |               |
| Clear Time:         | 1500 ms         |                     |       |               |
| Sen Sel:            | ГІГІГШ          | Time Configuration  |       |               |
|                     | T Reset         | Set Delay:          | 1000  | ms            |
| Gain Sel:           | 🗆 GAINO 🗖 GAIN1 | Inner Delay:        | 1000  | ms            |
|                     | 🗆 GAIN2 🗖 GAIN3 | Exp Window:         | 10000 | ms            |
| Trigger:            | Outer 💌         |                     | 1     |               |
|                     | Outer           | RAD Enable Signal   |       |               |
| Tube Ready Time:    | Software        | Cow Valid           | C     | `High Valid   |
|                     |                 |                     |       |               |
| 1                   | 1               | 1                   | 1     | 1             |

Main version: firmware version of Main Board

Read version: firmware version of Read board

VT, PGA, Time Span, integrate, clear time:

Factory parameters, please don't modify

Acquire Delay: in inner trigger mode, the delay from T-AEC trigger to image acquisition.

Sen sel: intrinsic AEC sensor selection, only works with FPD has build in AEC function.

Gain sel: intrinsic AEC gain parameter, only works with FPD has build in AEC function.

Set Delay: time span between scrubbing and acquisition.

Exp Window: maximal waiting time for FPD from scrub to acquisition.

Trigger: inner trigger, refer to chapter 4.6.2

outer trigger, refer to chapter 4.6.1

software trigger, refer to chapter 4.6.3

#### 3.4 Gain correction

Gain correction file should be generated before image acquisition by the following steps:

- (1) select "post" offset selection
- (2) Press "Create" button and select "Gain" tab in "Correction Wizard" window
- (3) Input expected gray scale of image center into "Expected Gray Value" before exposure, and press "new gain point".

| Correction Firard<br>Effaul Glin   Isfact  <br>- Saperled Average | PEP                                                                     |
|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| Expected Gray Value:<br>[2003]<br>New Glin Foint                  | Selected Foints 0<br>=> Current Average 0<br>Center Average 0<br>Select |
| Urwste G                                                          | um file Create Default Correction File                                  |

(4) In "inner trigger" mode, click "prep" bottom and wait for message in status bar change from "Exposure prohibited state" to "Exposure enable state" and radiate. in "outer trigger "mode, radiate directly



(5) After the upload of image, software will calculate the overall average and center average of this image and display them in "New Point" sector. If center average value is far from expected value, please adjust X ray dose and radiate again or modify expected Gray value to make them match.

(6) Press "select" bottom, and this point will be added to "Selected points" list

| 🖢 IDeno |                                                                                                 | _ 5 X            |
|---------|-------------------------------------------------------------------------------------------------|------------------|
|         |                                                                                                 | Control          |
|         |                                                                                                 | Start            |
|         |                                                                                                 |                  |
|         |                                                                                                 |                  |
|         |                                                                                                 | Acquire          |
|         | Correction Minord                                                                               | PREP             |
|         | CUEFECTION WINNER                                                                               |                  |
|         | Offset ban  Defect                                                                              | Acquire          |
|         | 7127                                                                                            | PREP Acquire     |
|         | - Expected Average - Sev Point                                                                  |                  |
|         | Selected Points 1 10082 10913                                                                   | Other            |
|         | Expected Gray Value:<br>=> Current Average 10082 =>                                             | Config           |
|         | Center Average 10913                                                                            | Save             |
|         | See Guin Print Select                                                                           |                  |
|         |                                                                                                 | Start Winodw     |
|         |                                                                                                 | Set              |
|         | Create Gain File Create Default Correction File                                                 | Show             |
|         |                                                                                                 |                  |
|         |                                                                                                 | Offset: post +   |
|         |                                                                                                 | Gain: NO -       |
|         |                                                                                                 | Defects NO -     |
|         |                                                                                                 |                  |
|         |                                                                                                 | Create           |
|         |                                                                                                 | Navine 1052      |
|         | WW: 16335                                                                                       | -distric 1.0.3/2 |
|         | WL: 14803                                                                                       |                  |
|         | CMP Per (1:2228 I: 984 ) Value: 11258 121989 (st) Exposure enable state (Inner delaw time:1387) |                  |

- (7) Click "Create Gain File" to finish the process.
- (8) Multiple gain point correction file can be generated by redo step (3) to step (6) several times with different radiation dose.

#### **3.5 Defect Calibration**

(1)Select "no" in Offset, Gain and Defect options.(2) Press "Create" button and select "Defect" tab

| IDemo |                    |                                  |                   |                                           | - 6 ×            |
|-------|--------------------|----------------------------------|-------------------|-------------------------------------------|------------------|
|       |                    |                                  |                   |                                           | Control          |
|       |                    |                                  |                   |                                           | Start            |
|       |                    |                                  |                   |                                           | Stop             |
|       |                    |                                  |                   |                                           | Acquire          |
|       | Correction Virard  |                                  |                   |                                           | PREP             |
|       | Offset Gain Defect |                                  |                   | 1                                         | Acquire          |
|       |                    |                                  |                   |                                           |                  |
|       |                    |                                  |                   |                                           | PREP Acquire     |
|       |                    | PREP                             |                   |                                           | Other            |
|       |                    |                                  |                   |                                           | Config           |
|       |                    | TATE                             |                   |                                           | Save             |
|       |                    |                                  |                   |                                           | Start Winodw     |
|       |                    |                                  |                   |                                           | Set              |
|       |                    | Creste Defect File               |                   |                                           | Show             |
|       |                    | Create Default Correction File   |                   |                                           | Correction       |
|       |                    |                                  | 07                |                                           | Gain: NO V       |
|       |                    |                                  |                   |                                           | Defect: NO 💌     |
|       |                    |                                  |                   |                                           | Create           |
|       |                    |                                  |                   |                                           |                  |
|       |                    |                                  |                   | WW: 16335                                 | version: 1.0.5.2 |
|       |                    |                                  |                   | WL: 14803                                 |                  |
|       |                    | Pos(X:3063 I:2190 ) Value: 10913 | 121969 (ns.) Expo | sure enable state (Inner delay time:1367) |                  |

(3)Press "Dark" button and wait for dark images acquisition

(4)Press "Light" button

(5)In "inner trigger "mode, press "prep" and wait for status bar to change from "Exposure prohibited" to "Exposure enable status" and radiate . Follow message box instructions to repeat radiate 5 times.

In "outer trigger "mode, radiate directly. And follow message box instructions to repeat radiate 5 times.

(6) Click "Create Defect File" to finish the process

### **3.6 Acquire calibrated image**

Acquire images with "post" in offset options, "Curr" in Gain options and "Curr" in Defect options selected.

## 4. Chapter IV Control Interface

Control box is the relay device between computer and detector. As shown in the figure, there are 5 connection ports at the back of the control box. Some of this interface may not provide function, please contact your dealer.



- Ϋ Power Supply: Three-phase (electric) outlet for AC110-240V power input.
- Ϋ́ LAN: Gigabit Ethernet port connected to PC.
- Ϋ RS-232: Serial port connected to PC.
- Ϋ HVG: Control interface connected to High-Voltage Generator.
- $\ddot{Y}$  Detector: Integrated interface with power and data connected to detector.

#### 4.1 AC Input

AC input shall be connected to AC 110-240V three-phase power. Be careful confirm that the AC socket must have right earth connection terminals. The control box shall conforming to IEC 60601-1.

#### 4.2 Serial Port

The Serial Port shall be connected with the D-Sub 9 serial cable (included in the package) to a serial port of the user's computer. The serial port is used to transmit image acquisition and detector configuration commands from the user's computer to



the detector.

If the pc does not have a standard serial port, the user can use usb-serial converter. User can also use the usb-serial converter to connect with PC.

#### 4.3 Gigabit Ethernet Port

The GBE port shall be connected with an Ethernet cable to a Gigabit Ethernet Port of the user's computer. The GBE port transmits image data through Gigabit Ethernet protocol.



For NIC (Network Interface Card), Intel Pro EXP9301CT PRO Gigabit Network Adapter with PCIe interface is recommended. If the user prefers any other Gigabit Network Adapter, only those PCIe interface should be considered.

### 4.4 HVG Interface

The HVG interface with 16 pins is connecting to HVG to synchronize HVG and the detector. Next Interface for Venu1717M, Contact the manufacture for other detector.

| Wire Label | Wire Color  | J1 | I/O | Signal Description                         |
|------------|-------------|----|-----|--------------------------------------------|
| HVG_GND    | Gray&Shield | 1  | /   | GND                                        |
| AEC_SELA   | Yellow      | 2  | 0   | AEC sensor selected signal A               |
| AEC_SELB   | Blue        | 3  | 0   | AEC sensor selected signal B               |
| HVG_GND    | Green       | 4  | Ι   | GND                                        |
| AEC_OUT    | Brown       | 5  | 0   | AEC analog output signal                   |
| AEC_SELC   | Orange      | 6  | 0   | AEC sensor selected signal C               |
| PREP       | Red         | 7  | Ι   | This signal is started by hand switch. The |
|            |             |    |     | signal sent to Detector to "Clear the      |
|            |             |    |     | Pixels". Detector will finish the" Clear"  |
|            |             |    |     | within fixed time. When the hand switch    |
|            |             |    |     | pushed, the Anode of Tube will start to    |
|            |             |    |     | rotate at high speed meanwhile with the    |
|            |             |    |     | Detector "Clear".                          |

| RAD_EN | Purple | 8 | 0 | The Anode is ready and Generator could    |
|--------|--------|---|---|-------------------------------------------|
|        |        |   |   | start Exposure.                           |
|        |        |   |   | If Detector returns the RAD_EN, the       |
|        |        |   |   | Generator will start Exposure             |
|        |        |   |   | immediately.                              |
| RAD    | Black  | 9 | Ι | The Generator started a Exposure and      |
|        |        |   |   | send the Exposure signal to Detector.     |
|        |        |   |   | Detector will start "Readout" at the back |
|        |        |   |   | porch of Exposure.                        |
|        |        |   |   |                                           |

#### 4.5 T-AEC Module

The detector has an embedded well-proved T-AEC (Traceless AEC) module with Ionization Chamber and AEC board for automatic exposure control. The AEC module provides a very stable inner trigger signal of calibrated pulses with a resolution of up to 5nGy. The energy range is from 40kV to 150kV.

#### 4.6 X-ray Image Acquisition

Venu1717 provides carefully designed functions and commands for the end users to acquire X-ray images under various environments. The user needs to select one of three acquisition trigger modes:

The trigger mode must be set correctly before image acquisition, otherwise image acquisition may not work properly.

**4.6.1 Outer-trigger mode,** in which acquisition is triggered by the HVG RAD signals coming from the HVG to the Control Box HVG interface. This mode is recommended for DR system manufacturer. User can operate the hand switch for RAD and X-ray image acquisition.

System installation

Important

As figure, the integrated power and data wire shall be connected between detector and control box, and serial port wire and gigabit Ethernet port wire shall be connected between PC and control box.



#### I X-ray Trigger method

User can operate the X-ray exposure hand switch to start the tube and fire the X-ray. The hand switch shall be connected to specified interface of HVG.



#### HVG connection

Hvg connection wires include PREP, RAD\_EN, RAD, HVG\_GND.



For user reference, the inside isolator interface to HVG in control box is as figure.





The PREP, RAD\_EN and RAD signals are all low level valid.



I X-ray image acquisition timing

Exposure Windows time could be set up by software, **RAD\_EN** could be set up High Level effective or Low Level effective. **RAD\_EN** is Low Level effective by factory.

As timing figure, idle ready status, PREP and RAD signals of HVG are high, and RAD\_EN signal of control box is low.



When user press hand switch I scale for exposure requirement, PREP will pull low and RAD\_EN pull high. Now the HVG is in exposure prohibition status about 1500ms, then RAD\_EN shall pull low. Any time (as short as possible) user can fire the X-ray, with the RAD pull a low pulse. Exposure finished, detector shall readout the image data and transfer.

**4.6.2 Inner-trigger mode,** in which acquisition is triggered by internal sync-shot sensor of the detector. This mode is recommended for DR system manufacturer and DR system upgrading and upcycling. User can operate the hand switch for RAD and X-ray image acquisition.

System installation

As figure, the integrated power and data wire shall be connected between detector and control box, and serial port wire and gigabit Ethernet port wire shall be connected between PC and control box. No wires need to connected to HVG. User only shall operate the hand swith to fire X-ray.

(i) Information

The T-AEC module shall be installed in detector. Only the -I and -A type detector can support inner-trigger mode function.

I X-ray Trigger method



User can operate the X-ray exposure hand switch to start the tube and fire the X-ray. The hand switch shall be connected to specified interface of HVG

#### I HVG connection

None.

#### I X-ray image acquisition timing

As timing figure, idle ready status is waiting for the DR software clear command to start clear process.



After 1500ms clearing process, detecter shall be in ready status again. Any time (as short as possible) user can fire the X-ray by operate the hand switch. Exposure finished, detector shall readout the image data and transfer.
**4.6.3 Soft-trigger mode,** in which acquisition is triggered by the DR software through the integrated data wires. This mode is recommended for special applied DR system manufacturer.

#### **I** System installation

As figure, the integrated power and data wire shall be connected between detector and control box, and serial port wire and gigabit Ethernet port wire shall be connected between PC and control box. Another PC shall connect to HVG for exposure.



```
I X-ray Trigger method
```

DR software shall control the HVG by communication port.

#### I HVG connection

None.

#### I X-ray image acquisition timing

At soft-trigger mode, DR software clear command start the clear process, meanwhile control the HVG for prepares. When detector is in clearing process, busy command shall be returned. Clearing finished, ready command shall be returned and DR software can control the HVG to fire X-ray any time. RAD process time can be attained by DR software or T-AEC module. Once RAD process is over, acquisition command shall be send to detector for readout and transfer.

#### 4.6.4 PREP mode

All process of Clear-Readout & Transfer are triggered by PREP I Scale or the signal of finished the rotating of X ray tube

Exposure Windows time could be set up by software, XON don't need to be connected, PREP & RAD\_EN should be connected.



# 4.7 Event

About Venu1717, the concept EVENT should be noted

### **Ÿ** Prep Event (P-EVENT)

When prep event occur, detector will start clearing lag process for ready. The clear time of Single Driver type is 1500ms, and Dual Driver type is 800ms.

| Applied Trigger Mode | Trigger Method     |
|----------------------|--------------------|
| Outer-trigger mode   | Prep signal of HVG |
| Inner-trigger mode   | Software command   |
| Soft-trigger mode    | Software command   |

### **Ÿ** Acqu Event (A-EVENT)

When acqu event occur, detector will start progressive scanning and acquisition the image of TFT matrix sensor. In addition, use can adjust the acqu event delay time for some requirements.

| Applied Trigger Mode | Trigger Method |
|----------------------|----------------|
|                      |                |

| Outer-trigger mode | RAD signal of HVG        |
|--------------------|--------------------------|
| Inner-trigger mode | Inner AEC trigger signal |
| Soft-trigger mode  | Software command         |

#### **Ÿ** Prep Acqu Event (PA-EVENT)

When prep acqu event occur, detector will start clearing lag process, delay some time, then start progressive scanning and acquisition the image of TFT matrix sensor automatically. The PA-EVENT may be applied in post-offset image acquisition.

#### **Ÿ** Serial Acqu Event (SA-EVENT)

When serial acqu event occur, detector will start progressive scanning and acquisition the image continuously.



If the A-EVENT delay time is set by expositing time, and fire the X-ray at the synchrolock tick, DR software can realize the dynamic acquisition.

#### **Ÿ** Time Event (T-EVENT)

A time counter is in detector for record time (ms) between the recent P-EVENT and A-EVENT. The P-EVENT will start the counter from 0, and then E-EVENT will get the current counter value as the tick time. Meanwhile the tick time will be return. DR software can get this value then invoke the PA-EVENT for precise post-offset.

# **5.**Chapter V Regulatory Information

The product safety standards that apply to the Venu1717, which includes the main unit detector and Control Box.

# 5.1 Medical equipment safety standards

| Type of protection against electrical shock   | Internally powered equipment                  |
|-----------------------------------------------|-----------------------------------------------|
|                                               | Class I Equipment, with wiring unit           |
| Degree of protection against electrical shock | Type B Applied Parts                          |
| Degree of protection against ingress of water | IP20                                          |
| Mode of operation                             | Continuous operation                          |
| Flammable anesthetics                         | Not suitable for use in the presence of a     |
|                                               | flammable anesthetic mixture with air or with |
|                                               | oxygen or nitrous oxide                       |

**u** Medical equipment classification

**u** Product safety standards

| MDD (93/42/EEC) Medical   | Medical Device Directive                                      |  |  |
|---------------------------|---------------------------------------------------------------|--|--|
| EN ISO 13485:2003+AC:2007 | Medical devices Quality management systems                    |  |  |
|                           | Requirements for regulatory purposes                          |  |  |
| EN 60601-1:1990           | Medical electrical equipment - Part 1: General requirements   |  |  |
|                           | for safety                                                    |  |  |
| EN 60601-1-1:2001         | Medical electrical equipment - Part 1-1: Collateral standard: |  |  |
|                           | Safety requirements for medical electrical systems            |  |  |
| EN 60601-1-2:2001         | Medical electrical equipment - Part 1-2: Collateral standard: |  |  |
|                           | Electromagnetic compatibility – Requirements and tests        |  |  |
| EN 60601-1-3:1994         | Medical electrical equipment – Part 1-3: Collateral standard: |  |  |
|                           | General requirements for radiation protection in diagnostic   |  |  |
|                           | X-ray equipment                                               |  |  |
| EN 60601-2-32:1994        | Medical electrical equipment - Part2: Particular              |  |  |
|                           | requirements for the safety of associated equipment of X-ray  |  |  |
|                           | equipment                                                     |  |  |

EN ISO14971: 2007

Medical device – Application of risk management to medical devices

# 5.2 Guidance and manufacture's declaration for EMC

#### **u** Electromagnetic emissions

The Venu1717 detector is intended for use in the electromagnetic environment specified below. The customer or the user of the Venu1717 detector should assure that it is used in such an environment.

| Emission Test                       | Compliance | Electromagnetic Environment - Guidance                                                                                                                                 |  |  |
|-------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RF emissions CISPR 11               | GROUP1     | It uses RF energy only for its internal function. Its RF<br>emissions are very low and are not likely to cause any<br>interference in nearby electromagnetic equipment |  |  |
| RF emissions CISPR 11               | Class B    |                                                                                                                                                                        |  |  |
| Harmonic emissions<br>IEC 61000-3-2 | Class B    | It is suitable for use in all establishments other than<br>domestic and those directly connected to the public                                                         |  |  |
| Voltage fluctuations/ flicker       |            | low-voltage power supply network that supplies buildings                                                                                                               |  |  |
| emissions                           | Pass       | used for domestic purposes.                                                                                                                                            |  |  |
| IEC 61000-3-3                       |            |                                                                                                                                                                        |  |  |

#### **U** Electromagnetic immunity

The Venu1717 detector is intended for use in the electromagnetic environment specified below. The customer or the user of the Venu1717 detector should assure that it is used in such an environment.

| Immunity Test                                        | IEC 60601 Test<br>Level                                                                                   | Compliance Level                                                                                          | Electromagnetic Environment -<br>Guidance                                                                                                              |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrostatic discharge<br>(ESD)<br>IEC 61000-4-2    | ±6 kV contact<br>±8)kV air                                                                                | ±6)kV contact<br>±8kV air                                                                                 | Floors should be wood, concrete or<br>ceramic tile. If floors are covered<br>with synthetic material, the relative<br>humidity should be at least 30%. |
| Electrical fast transient/<br>burst<br>IEC 61000-4-4 | <ul> <li>±2 kV for power</li> <li>supply lines</li> <li>±1 kV for input/</li> <li>output lines</li> </ul> | <ul> <li>±2 kV for power</li> <li>supply lines</li> <li>±1 kV for input/</li> <li>output lines</li> </ul> | Mains power quality should be that of<br>a typical commercial or hospital<br>environment.                                                              |
| Surge                                                | $\pm 1$ kV differential                                                                                   | $\pm 1$ kV differential                                                                                   | Mains power quality should be that of                                                                                                                  |

| IEC 61000-4-5         | mode                     | mode                  | a typical commercial or hospital                                     |  |  |
|-----------------------|--------------------------|-----------------------|----------------------------------------------------------------------|--|--|
|                       | ±2 kV common             | $\pm 2$ kV common     | environment.                                                         |  |  |
|                       | mode                     | mode                  |                                                                      |  |  |
|                       | <5% UT (>95% dip         | <5% UT (>95% dip      | Maria and the standard starts                                        |  |  |
| Voltage dips, short   | in UT) for 0.5 cycle.    | in UT) for 0.5 cycle. | Mains power quanty should be that of                                 |  |  |
| interruptions and     | 40% UT (60% dip          | 40% UT (60% dip       | a typical commercial or nospital                                     |  |  |
| voltage variations on | in UT) for 5 cycle.      | in UT) for 5 cycle.   | environment. If the user of that                                     |  |  |
| power supply input    | 70% UT (30% dip          | 70% UT (30% dip       | requires continued operation during                                  |  |  |
| lines                 | in UT) for 25 cycle.     | in UT) for 25 cycle.  | power mains interruptions, it is                                     |  |  |
| IEC 61000-4-11        | <5% UT (>95% dip         | <5% UT (>95% dip      | recommended that be powered from                                     |  |  |
|                       | in UT) for 5 sec.        | in UT) for 5 sec.     | an uninterruptible power supply.                                     |  |  |
| Power frequency       |                          |                       | Power frequency magnetic fields                                      |  |  |
| (50/60Hz) magnetic    | 2 4 /m                   | 2 4 /m                | should be at levels characteristic of a                              |  |  |
| field                 | 5 A/III                  | 5 A/III               | typical location in a typical                                        |  |  |
| IEC 61000-4-8         |                          |                       | commercial or hospital environment.                                  |  |  |
| Conducted RF          | 3 Vrms                   | 3 Vrms                | Portable and mobile RF                                               |  |  |
| IEC 61000-4-6         | 150kHz to 80MHz          |                       | communications equipment should be                                   |  |  |
|                       |                          |                       | used no closer to any part of the                                    |  |  |
|                       |                          |                       | Model VENU1717, including cables,<br>than the recommended separation |  |  |
|                       |                          |                       |                                                                      |  |  |
|                       |                          |                       | distance calculated from the equation                                |  |  |
|                       |                          |                       | applicable to the frequency of the                                   |  |  |
|                       |                          |                       | transmitter.                                                         |  |  |
|                       |                          |                       | Recommended separation distance                                      |  |  |
|                       | 3 V/m<br>80MHz to 2.5GHz |                       | $d = 1,2 \ \sqrt{p}$                                                 |  |  |
| Radiated RF           |                          | 3 V/m                 | d = 1,2 $\sqrt{p}$ 80 MHz to 800 MHz                                 |  |  |
| IEC 61000-4-3         |                          |                       | d = 2,3 $\sqrt{p}$ 800 MHz to 2,5 GHz                                |  |  |
|                       |                          |                       | where P is the maximum output                                        |  |  |
|                       |                          |                       | power rating of the transmitter in                                   |  |  |
|                       |                          |                       | watts (W) according to the transmitter                               |  |  |
|                       |                          |                       | manufacturer and d is the                                            |  |  |
|                       |                          |                       | recommended separation distance in                                   |  |  |
|                       |                          |                       | metres (m).                                                          |  |  |
|                       |                          |                       | Field strengths from fixed RF                                        |  |  |
|                       |                          |                       | transmitters, as determined by an                                    |  |  |
|                       |                          |                       | electromagnetic site survey,a should                                 |  |  |

|  | be less than the compliance level in   |
|--|----------------------------------------|
|  | each frequency range.                  |
|  | Interference may occur in the vicinity |
|  | of equipment marked with the           |
|  | following symbol:                      |
|  | (((•••)))                              |

NOTE: UT is the a.c. mains voltage prior to application of the test level.

NOTE 1 At 80 MHz and 800 MHz, the higher frequency range applies.

- NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
- a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the Venu1717 detector is used exceeds the applicable RF compliance level above, the Venu1717 detector should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the Venu1717 detector.
- b Over the frequency range 150 kHz to 80 MHz, field strengths should be less than [V1] V/m.
- **u** Recommended separation distances between portable and mobile RF communications equipment and the Venu1717 detector

The Venu1717 detector is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the Venu1717 detector can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the Venu1717 detector as recommended below, according to the maximum output power of the communications equipment.

| Rated maximum  | Separation distance according to frequency of transmitter /m |                    |                    |  |
|----------------|--------------------------------------------------------------|--------------------|--------------------|--|
| output         | 150kHz~80 MHz                                                | 80 MHz~800 MHz     | 800 MHz ~2.5GHz    |  |
| power of       | $d = 1.2 \sqrt{p}$                                           | $d = 1.2 \sqrt{p}$ | $d = 2.3 \sqrt{p}$ |  |
| transmitter /W | u = 1.2                                                      | u = 1.2            | u = 2.5            |  |

| 0.01 | 0.12 | 0.12 | 0.23 |
|------|------|------|------|
| 0.1  | 0.38 | 0.38 | 0.73 |
| 1    | 1.2  | 1.2  | 2.3  |
| 10   | 3.8  | 3.8  | 7.3  |
| 100  | 12   | 12   | 23   |

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in metres (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

- NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.
- NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
- **U** Below cables information are provided for EMC reference.

| Cable                           | Recommended cable length | Shielded or Unshielded | Number | Cable classification |
|---------------------------------|--------------------------|------------------------|--------|----------------------|
| Controlbox Input<br>Power Cable | 3m                       | Unshielded             | 1 Set  | AC Power             |
| RS232 to PC Cable               | >3m                      | Shielded               | 1 pcs  | Signal               |
| LAN port Cable                  | >3m                      | Shielded               | 1 pcs  | Signal               |
| Interface to HVG<br>Cable       | >3m                      | Shielded               | 1 pcs  | Signal               |
| Data Cable                      | >3m                      | Shielded               | 1 pcs  | Signal               |

#### **u** Important information regarding Electro Magnetic Compatibility (EMC)

The Venu1717 detector needs special precautions regarding EMC and needs to be installed only by iRAy or authorization engineer and put into service according to the EMC information provided in the user manual; The Venu1717 detector in use may be susceptible to electromagnetic interference from portable and mobile RF communications such as mobile (cellular) telephones. Electromagnetic interference may result in incorrect operation of the system and create a potentially unsafe situation.

The Venu1717 detector conforms to this EN60601-1-2:2007 standard for both immunity and emissions.

Nevertheless, special precautions need to be observed:

The use of accessories, transmitters and cables other than those specified by this User Manual, with the exception of accessories and cables sold by iRay of the Venu1717 detector as replacement parts for internal components, may result in increased EMISSIONS or decreased IMMUNITY of the Venu1717 detector.

The Venu1717 detector should not be used adjacent to or stacked with other equipment. In case adjacent or stacked use is necessary, The Venu1717 detector should be observed to verify normal operation in the configuration in which it will be used.

#### **Description and Specification of ringcore**

Part number: 7427154

Description: STAR-RING ringcore with plastic case



Manufactory: Wurth Elektronik Co.

The recommended use of ringcore shown as following:

- a) The RS232 to PC Cable should be winding more than 2 turns near the RS232 port on the controlbox .
- b) The Interface to HVG Cable should be winding more than 2 turns near the Interface port on the controlbox.
- c) If USB to RS232 cable were used, the cable should be winding more than 2 turns near the USB port.

# 6.Chapter VI Imaging Software SDK

The imaging software library **IrayAcquireLib.lib** provides the fundamental functions for detector configuration and image acquisition. A program iDemo has been included in the package to demonstrate how to use this library. Please note that the images acquired from the **IrayAcquireLib.lib** have only been modestly processed and the users need to develop their own software with a separate image processing engine.

| 6.1 Description of Library | (IrayAcquireLib.lib) |
|----------------------------|----------------------|
|----------------------------|----------------------|

| Item                                          | Description                                 |  |
|-----------------------------------------------|---------------------------------------------|--|
| Detector Connection                           |                                             |  |
| Acquisition_Initialize                        | To initialize the SDK library.              |  |
| Acquisition_Close                             | To close the SDK library.                   |  |
| Acquisition_SetAecCallback                    | The callback function for detector prepare. |  |
| Acquisition_SetComCallback                    | The callback function of serial port.       |  |
| Acquisition_GigeAdapterObjectSetImageCallback | The callback function of image acquisition. |  |
| Acquisition_GigeGetAdapterList                | To get the list of network adapters.        |  |
| Acquisition_GigeFreeAdapterList               | To uninstall the network adapter.           |  |
| Acquisition_ResetDRConfig                     | To reset the detector.                      |  |

|                                       | Image Acquisition                                                                                                                                                                                                                                                |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Acquisition_StartAecReady             | Detector prepare command.                                                                                                                                                                                                                                        |  |
| Acquisition_GetDRConfigClearTime      | To get the time needed for detector prepare. Note that this time is fixed for 1500ms                                                                                                                                                                             |  |
| Acquisition_SetDRConfigClearTime      | To set the time needed for detector prepare. Note that currently this time is fixed and not configurable.                                                                                                                                                        |  |
| Acquisition_StartAcquisition          | Image acquisition command. The detector will acquire an image after a certaindelay upon receiving the command. The delay is set byAcquisition_SetDRConfigAecExpTime                                                                                              |  |
| Acquisition_GetDRConfigAecExpTime     | To get the delay for image acquisition command.                                                                                                                                                                                                                  |  |
| Acquisition_SetDRConfigAecExpTime     | To set the delay for image acquisition command. Range: 0 ~ 65535, Unit: ms.                                                                                                                                                                                      |  |
| Acquisition_StartClearTimeAcquisition | Prepare + acquisition command. The command includes a delay between the end<br>of prepare and the beginning of acquisition. Normally the delay can be set as<br>the number obtained from Acquisition_GetDRConfigSetDelayTime or<br>Acquisition_GetInnerDelayTime |  |
| Acquisition_GetDRConfigSetDelayTime   | To get the delay between prepare and acquisition set previous in the detector.                                                                                                                                                                                   |  |
| Acquisition_SetDRConfigSetDelayTime   | To set the delay between prepare and acquisition in the detector. Range: $0 \sim 65535$ , Unit: ms.                                                                                                                                                              |  |
| Acquisition_GetInnerDelayTime         | To get the actual delay between prepare and acquisition happened most recently.<br>Range: 0 ~ 65535, Unit: ms                                                                                                                                                    |  |
| Acquisition_StartSequence             | Command for continuous acquisition.                                                                                                                                                                                                                              |  |

| Acquisition_StopSequence                                          | To stop the continuous acquisition.                 |  |
|-------------------------------------------------------------------|-----------------------------------------------------|--|
| Acquisition_GetDRConfigSerialTimeSpan                             | To get the interval between continuous acquisition. |  |
|                                                                   | To set the interval between continuous acquisition. |  |
| Acquisition_SetDRConfigSerialTimeSpan                             | Range: 1800 ~ 65535, Unit: ms.                      |  |
| Detector Configuration                                            |                                                     |  |
| cquisition_ReadDRConfig To read all the detector configurations.  |                                                     |  |
| Acquisition_GetDRConfigVersion                                    | To get the main board firmware version.             |  |
| Acquisition_GetDRConfigVT                                         | To get the charge injection voltage VT.             |  |
|                                                                   | To set the charge injection voltage VT.             |  |
| Acquisition_SetDRConfigVT                                         | Range: 1.25 ~ 4.50, Unit: Volt                      |  |
| Acquisition_GetDRConfigPGA To get the PGA number of the detector. |                                                     |  |
|                                                                   | To set the PGA number of the detector.              |  |
| Acquisition_SetDRConfigPGA                                        | Range: 0,1,2,3,4,5,6,7                              |  |
| Acquisition_GetDRConfigIntegrate                                  | To get the integration time of each pixel.          |  |
|                                                                   | To set the integration time of each pixel.          |  |
| Acquisition_SetDRConfigIntegrate                                  | Range: 100(fixed) Unit: us                          |  |
|                                                                   | Note: currently this value cannot be changed.       |  |
| Acquisition_GetDRConfigAecSensor                                  | To get the AEC sensor number.                       |  |
| Acquisition_SetDRConfigAecSensor                                  | To set the AEC sensor number.                       |  |
| Acquisition_GetDRConfigAecGain                                    | To get the gain of the AEC sensor.                  |  |
| Acquisition_SetDRConfigAecGain                                    | To set the gain of the AEC sensor.                  |  |
| Acquisition_GetDRConfigAecMode                                    | To get the trigger mode of the detector.            |  |

Chapter VI Image Software SDK

|                                | To set the trigger mode of the detector.                                   |  |
|--------------------------------|----------------------------------------------------------------------------|--|
|                                | 0: Outer trigger mode, inner trigger is disabled, HVG trigger is enabled.  |  |
| Acquisition_SetDRConfigAecMode | 1: Inner trigger mode, inner trigger is enabled, HVG trigger is disabled   |  |
|                                | 2: Software trigger mode, both inner trigger and HVG trigger are disabled. |  |
|                                | 3: Service trigger mode, all triggers are enabled.                         |  |
| Acquisition_DRConfigUpdateAll  | To update all the detector configuration.                                  |  |
| Acquisition_QueryTemperature   | Temperature command.                                                       |  |
| Acquisition_QueryHumidity      | Humidity command.                                                          |  |
| Acquisition_QueryReadVersion   | Read version command.                                                      |  |
| Acquisition_GetTemperature     | To get the temperature value.                                              |  |
| Acquisition_GetHumidity        | To get the humidity value.                                                 |  |
| Acquisition_GetReadVersion     | To get the read version number.                                            |  |
| Image Correction               |                                                                            |  |
| Acquisition_GetImageSize       | To get the width and height of the image.                                  |  |
| Correction_SetCorrectCallback  | To set the calibration callback function.                                  |  |
| Correction_GenerateOffsetFile2 | To generate offset template.                                               |  |
| Correction_SetOffsetBaseValue  | To set offset base value.                                                  |  |
| Correction_GenerateGainFile    | To generate gain template.                                                 |  |
| Correction_SelectGain          | To select one bright image (used in the generation of gain template).      |  |
| Correction_UnloadGainData      | To unload gain template tempera files.                                     |  |
| Correction_SaveGainFile        | To save gain template file.                                                |  |
| Acquisition_GetDarkFrames2     | To acquire several (by default 5) raw dark images.                         |  |

| Chapter VI Image Software SDF | Chapter V | /1 | Image | Software | SDI | K |
|-------------------------------|-----------|----|-------|----------|-----|---|
|-------------------------------|-----------|----|-------|----------|-----|---|

| Acquisition_GetLightFrames   | To acquire several (by default 5) raw bright images.           |  |
|------------------------------|----------------------------------------------------------------|--|
| Correction_IsCreateLightFile | To generate a bright image (used to generate defect template). |  |
| Correction_CreateDefectFile  | To generate defect template.                                   |  |
| Correction_SetDoOffset2      | To set pre-offset correction.                                  |  |
| Correction_SetAutoOffset     | To set post-offset correction.                                 |  |
| Correction_SetDoGain         | To set gain correction.                                        |  |
| Correction_SetDoDefect       | To set defect correction.                                      |  |
| Correction_GetDoOffsetStatus | To get the current status of offset correction.                |  |
| Correction_GetDoGainStatus   | To get the current status of gain correction.                  |  |
| Correction_GetDoDefectStatus | To get the current status of defect correction.                |  |

### **6.2 Description of Function:**

#### 6.2.1 Acquisition\_Initialize

The function is initializing base information, create uart device object, create NIC object, connection acquire lib.

ACQUIRE\_HEADER\_API INT Acquisition\_Initialize(

#### INITIALIZEINFO initInfo,

PCHAR pComName,

PCHAR pAdapterName,

#### HANDLE &hAdapter

);

Description of parameters:

initInfo: Initialize information, it has the number of detector and the full path of config file and the path of correct file.

pComName: The number of used uart port, such as COM1.

pAdapterName: The name of network card object.

hAdapter: The handle of return object.

Return values:

- 1: Successful.
- -1: Failed.

#### 6.2.2 Acquisition\_Close

The function unloads the uart device object and NIC object, close acquire lib.

#### ACQUIRE\_HEADER\_API void Acquisition\_Close (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.3 Acquisition\_SetAecCallback

The function is set callback function of clear information. The parameter pAecInfo is function pointer of clear information. When user creates the global function to transfer the parameter pAecInfo, then this function is received by running library and registered. Once clear information ready, the callback function will return

the clear information by this function pointer.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetAecCallback (

HANDLE hAdapter,

AecInfoCallback pAecInfo,

#### LPVOID pUser

);

Description of parameters:

hAdapter: The network card object.pAecInfo: The callback function of clear information.pUser: The pointer of user.

#### 6.2.4 Acquisition\_SetComCallback

The function is set the callback function of uart information. The parameter pComInfo is function pointer of uart information. When user create the global function to transfer the parameter pComInfo, then this function is received by running library and registered. Once uart data is acquisitioned, the callback function will return the uart data by this function pointer.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetComCallback(

HANDLE hAdapter,

GetComInfo pComInfo,

LPVOID pUserInfo

);

Description of parameters:

hAdapter: The network card object.

pComInfo: Uart information.

pUserInfo: The pointer of user.

#### 6.2.5 Acquisition\_GigeAdapterObjectSetImageCallback

The function is set the callback function of image information. The parameter pComInfo is function pointer of image information. When user create the global function to transfer the parameter pComInfo, then this function is received by running library and registered. Once uart data is acquisitioned, the callback function will return the image data by this function pointer.

#### void Acquisition\_GigeAdapterObjectSetImageCallback(

HANDLE hAdapter,

NewDataCallback pImageHandle,

#### LPVOID pUser

);

Description of parameters:

hAdapter: The network card object. pImageHandle: The pointer of callback function. pUser: The pointer of user.

#### 6.2.6 Acquisition\_GigeGetAdapterList

The function is to return the pointer of struct GIGE\_ADAPTERNAMELIST. It is a one-way chained list, which has saved the name of network card.

#### GIGE\_ADAPTERNAMELIST\* Acquisition\_GigeGetAdapterList();

Return values:

GIGE\_ADAPTERNAMELIST: The header of chained list of network card name.

#### 6.2.7 Acquisition\_GigeFreeAdapterList

The function is release the list pointer from Acquisition\_GigeGetAdapterList.

#### VOID Acquisition\_GigeFreeAdapterList(

GIGE\_ADAPTERNAMELIST\* pAdapterList

);

Description of parameters:

pAdapterList: The chained list pointer of network card.

#### 6.2.8 Acquisition\_StartAecReady

The function is clear detector. The clear time can be obtained from the Acquisition\_GetDRConfigClearTime function. The current clear time is a fixed value of 1500 ms, can not be modified.

#### ACQUIRE\_HEADER\_API BOOL Acquisition\_StartAecReady(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.9 Acquisition\_GetDRConfigClearTime

The function is to get the time needed for detector prepare. Note that this time is fixed for 1500ms.

### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigClearTime(

#### HADNDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Get clear time value.

#### 6.2.10 Acquisition\_SetDRConfigClearTime

The function is to set the time needed for detector prepare. Note that currently this time is fixed and not configurable.

#### ACQUIRE\_HEADER\_API BOOL Acquisition\_SetDRConfigClearTime(

#### HADNDLE hAdapter,

#### WORD wTime

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Set clear time value.

#### 6.2.11 Acquisition\_StartAcquisition

Image acquisition command. The detector will acquire an image after a certain delay upon receiving the command. The delay is set by

Acquisition\_SetDRConfigAecExpTime.

ACQUIRE\_HEADER\_API bool Acquisition\_StartAcquisition(

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.12 Acquisition\_GetDRConfigAecExpTime

The function is To get the delay time for image acquisition command.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigAecExpTime (

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.13 Acquisition\_SetDRConfigAecExpTime

The function is to set the delay for image acquisition command. Range:  $0 \sim 65535$ , Unit: ms.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigAecExpTime (

HANDLE hAdapter,

WORD wAecExpTime

);

Description of parameters:

hAdapter: The network card object.

wAecExpTime: The delay time value.

#### 6.2.14 Acquisition\_StartClearTimeAcquisition

The function is Prepare + acquisition command. The command includes a delay between the end of prepare and the beginning of acquisition. Normally the delay can be set as the number obtained from **Acquisition\_GetDRConfigSetDelayTime** or

Acquisition\_GetInnerDelayTime.

ACQUIRE\_HEADER\_API bool Acquisition\_StartClearTimeAcquisition(

HANDLE hAdapter,

WORD wDelayTime

);

Description of parameters:

hAdapter: The network card object.

wDelayTime: The delay time value.

#### 6.2.15 Acquisition\_GetDRConfigSetDelayTime

The function is to get the delay between prepare and acquisition set previous in the detector.

# ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigSetDelayTime (

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.16 Acquisition\_SetDRConfigSetDelayTime

The function is to set the delay between prepare and acquisition in the detector.

Range: 0 ~ 65535, Unit: ms.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigSetDelayTime (

HANDLE hAdapter,

WORD wDelayTime

);

Description of parameters:

hAdapter: The network card object.

wDelayTime: Set delay time.

### 6.2.17 Acquisition\_GetInnerDelayTime

The function is to get the actual delay between prepare and acquisition happened most recently.

Range: 0 ~ 65535, Unit: ms.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetInnerDelayTime (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.18 Acquisition\_StartSequence

The function is Command for continuous acquisition.

#### ACQUIRE\_HEADER\_API bool Acquisition\_StartSequence(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.19 Acquisition\_StopSequence

The function is to stop the continuous acquisition.

#### ACQUIRE\_HEADER\_API bool Acquisition\_StopSequence(

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.20 Acquisition\_GetDRConfigSerialTimeSpan

The function is to get the interval between continuous acquisition.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigSerialTimeSpan (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.21 Acquisition\_SetDRConfigSerialTimeSpan

The function is to set the interval between continuous acquistion

Range: 1800 ~ 65535, Unit: ms.

ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigSerialTimeSpan (

#### HANDLE hAdapter,

#### WORD wDelayTime

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.22 Acquisition\_GetImageSize

The function is get width and height of the image.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetImageSize(

HANDLE hAdapter,

DWORD &dwWidth,

DWORD &dwHeight

);

Description of parameters:

hAdapter: The network card object.

dwWidth: Image width.

dwHeight: Image height.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.23 Acquisition\_ReadDRConfig

The function is read current settings of detector.

#### ACQUIRE\_HEADER\_API BOOL Acquisition\_ReadDRConfig(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.24 Acquisition\_ResetDRConfig

The function is reset the detector. It can reset the firmware of detector and restore

the factory-set value.

#### ACQUIRE\_HEADER\_API BOOL Acquisition\_ResetDRConfig(

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Success.

#### 6.2.25 Acquisition\_GetDRConfigVersion

The function retrieves the main firmware version.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigVersion(

HANDLE hAdapter,

WORD &wV1,

WORD &wV2,

WORD &wV3

);

Description of parameters:

hAdapter: The network card object.

wV1: Product No..

wV2: Release No..

wV3: Amendment No..

#### 6.2.26 Acquisition\_GetDRConfigVT

The function is get the external voltage to control the amount of charge dump for TFT charge injection.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigVT(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.27 Acquisition\_SetDRConfigVT

The function is set the external voltage to control the amount of charge dump for TFT charge injection.

This value range: 1.25 to 4.50. units: Volt (V).

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigVT(

HANDLE hAdapter,

#### WORD wVT

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.28 Acquisition\_GetDRConfigPGA

The function is get the scale of charge level selection.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigPGA(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.29 Acquisition\_SetDRConfigPGA

The function is set the scale of charge level selection.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigPGA(

HANDLE hAdapter,

#### WORD wVGA

);

Description of parameters:

hAdapter: The network card object.

wVGA: The scale of charge level selection. The scope of value is from 0-7  $_{\circ}$  Default value is 5.

| Range | Typical FS Charge Range | Int FB Cap           |
|-------|-------------------------|----------------------|
|       | (Qr) pC                 | =( Qr)/(REEF-REEM)pF |
| 0     | 0.13                    | 0.0929               |
| 1     | 0.25                    | 0.1786               |
| 2     | 0.5                     | 0.3571               |

| 3 | 1.2 | 0.8571 |
|---|-----|--------|
| 4 | 2.4 | 1.7143 |
| 5 | 4.8 | 3.4286 |
| 6 | 7,2 | 5.1429 |
| 7 | 9.6 | 6.8571 |

#### 6.2.30 Acquisition\_GetDRConfigIntegrate

The function is get exposure window value of detector. The exposure window is used to set the whole time of the clear procedure, it should be large enough to complete the clear procedure.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigIntegrate(

HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.31 Acquisition\_SetDRConfigIntegrate

The function is set integrate time value of detector.

The current integrate time is a fixed value of 100 us, can not be modified.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigIntegrate(

HANDLE hAdapter,

#### WORD wIntegrate

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.32 Acquisition\_GetDRConfigAecSensor

The function is get three auto exposure sensors in the detector. User can select which or how many auto exposure sensors to be used.

#### ACQUIRE\_HEADER\_API void Acquisition\_GetDRConfigAecSensor(

HANDLE hAdapter,

BOOL &bSensor1,

BOOL &bSensor2,

BOOL &bSensor3,

#### **BOOL** & bReset

);

Description of parameters:

hAdapter: The network card object.

bSensor1: get exposure sensor.

bSensor2: get exposure sensor.

bSensor3: get exposure sensor.

bReset: reset to the factory setting.

#### 6.2.33 Acquisition\_SetDRConfigAecSensor

The function is set three auto exposure sensors in the detector. User can select which or how many auto exposure sensors to be used.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigAecSensor(

HANDLE hAdapter,

BOOL bSensor1,

BOOL bSensor2,

BOOL bSensor3,

**BOOL** bReset

);

Description of parameters:

hAdapter: The network card object.

bSensor1: set exposure sensor.

bSensor2: set exposure sensor.

bSensor3: set exposure sensor.

bReset: reset to the factory setting.

#### 6.2.34 Acquisition\_GetDRConfigAecGain

The function is get four gain coefficient. The four gain coefficient are associated with the auto exposure control sensor's linearity and sensitivity.

#### ACQUIRE\_HEADER\_API void Acquisition\_GetDRConfigAecGain(

HANDLE hAdapter,

BOOL &bGain0,

BOOL &bGain1,

BOOL &bGain2,

#### BOOL &bGain3

#### );

Description of parameters:

hAdapter: The network card object.

bGain0: get gain0 coefficient.

bGain1: get gain1 coefficient.

bGain2: get gain2 coefficient.

bGain3: get gain3 coefficient.

#### 6.2.35 Acquisition\_SetDRConfigAecGain

The function is set four gain coefficient.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigAecGain(

HANDLE hAdapter,

BOOL bGain0,

BOOL bGain1,

BOOL bGain2,

BOOL bGain3

);

Description of parameters:

hAdapter: The network card object.

bGain0: set gain0 coefficient.

bGain1: set gain1 coefficient.

bGain2: set gain2 coefficient.

bGain3: set gain3 coefficient.

#### 6.2.36 Acquisition\_GetDRConfigAecMode

The function is get the trigger mode of the detector.

#### ACQUIRE\_HEADER\_API WORD Acquisition\_GetDRConfigAecMode (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.37 Acquisition\_SetDRConfigAecMode

The function is to set the trigger mode of the detector.

- 0: Outer trigger mode, inner trigger is disabled, HVG trigger is enabled.
- 1: Inner trigger mode, inner trigger is enabled, HVG trigger is disabled
- 2: Software trigger mode, both inner trigger and HVG trigger are disabled.
- 3: Service trigger mode, all triggers are enabled

ACQUIRE\_HEADER\_API void Acquisition\_SetDRConfigAecMode ( HANDLE hAdapter,

#### WORD wMode

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.38 Acquisition\_DRConfigUpdateAll

The function is updating all set parameters of detector.

#### ACQUIRE\_HEADER\_API BOOL Acquisition\_DRConfigUpdateAll(

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

Return values:

FALSE: Failed.

TRUE: Successful.

#### 6.2.39 Correction\_SetCorrectCallback

The function is set callback function of correct information. The parameter pCorrectInfo is function pointer of correct information. When user creates the global function to transfer the parameter pCorrectInfo, then this function is received by running library and registered. Once correct complete, the callback function will return the correct information by this function pointer.

#### ACQUIRE\_HEADER\_API void Acquisition\_SetCorrectCallback (

HADNDLE hAdapter,

CorrectInfoCallback pCorrectInfo,

LPVOID pUser

);

Description of parameters:

hAdapter: The network card object. pCorrectInfo: The callback function of correct. pUser: The pointer of user.

#### 6.2.40 Correction\_GenerateOffsetFile2

The function is generate the template file for offset correction. First, user must set the basic value of offset correction by the function Correction\_SetOffsetBaseValue() and then acquisition specified numbers of image, which is set by parameter at nOffsetFrame. At the end, according to the callback function Correction\_SetCorrectCallback, whether the template file is created will be known. If the return value of Correction\_SetCorrectCallback is true, then the template file is generated successful. Or else is failed.

#### ACQUIRE\_HEADER\_API INT Correction\_GenerateOffsetFile2(

#### HADNDLE hAdapter,

WORD nOffsetFrame

);

Description of parameters:

hAdapter: The network card object.

nOffsetFrame: The number of acquisition image.

#### 6.2.41 Correction\_SetOffsetBaseValue

The function is set offset base value. The current default value is 100.

#### ACQUIRE\_HEADER\_API INT Correction\_SetOffsetBaseValue(

HADNDLE hAdapter,

#### WORD nBaseValue

);

Description of parameters:

hAdapter: The network card object.

nBaseValue: Offset base value.

#### 6.2.42 Correction\_GenerateGainFile

The function is generate gain correction file initialization.

#### ACQUIRE\_HEADER\_API INT Correction\_GenerateGainFile(

#### HADNDLE hAdapter,

#### WORD wExpectedValue

#### );

Description of parameters:

hAdapter: The network card object.

wExpectedValue: The expected gray value.

#### 6.2.43 Correction\_SelectGain

The function is select a exposure image.

#### ACQUIRE\_HEADER\_API void Correction\_SelectGain(

#### HADNDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.44 Correction\_UnloadGainData

The function is unload temp gain data.

#### ACQUIRE\_HEADER\_API INT Correction\_UnloadGainData(

#### HADNDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.45 Correction\_SaveGainFile

The function is generate the template file for gain correction. First, user must set do offset correct, set **Correction\_SetDoOffset()** is true. At the end, according to the callback function Correction\_SetCorrectCallback, whether the template file is created will be known. If the return value of Correction\_SetCorrectCallback is true, then the template file is generated successful. Or else is failed.

#### ACQUIRE\_HEADER\_API INT Correction\_SaveGainFile(

#### HADNDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.46 Acquisition\_GetDarkFrames2

The function is get five frames of original dark image. The default value is 5.

#### ACQUIRE\_HEADER\_API INT Acquisition\_GetDarkFrames2(

HANDLE hAdapter,

#### WORD wFrames

);

Description of parameters:

hAdapter: The network card object.

wFrames: The number of acquisition image.

#### 6.2.47 Acquisition\_GetLightFrames

The function is get five frames of original light image.

#### ACQUIRE\_HEADER\_API INT Acquisition\_GetLightFrames(

#### HADNDLE hAdapter,

#### WORD wFrames

);

Description of parameters:

hAdapter: The network card object.

wFrames: The number of acquisition image.

#### 6.2.48 Correction\_IsCreateLightFile

The function is create a original light image or not.

#### ACQUIRE\_HEADER\_API INT Correction\_IsCreateLightFile (

#### HADNDLE hAdapter,

#### **BOOL** bIsCreateFile

);

Description of parameters:

hAdapter: The network card object.

bIsCreateFile: true: do create light file.

false: do not do create light file.

#### 6.2.49 Correction\_GreateDefectFile

The function is create a defect pixel image.

#### ACQUIRE\_HEADER\_API INT Correction\_CreateDefectFile (

#### HADNDLE hAdapter,

#### WORD wMode

#### );

Description of parameters:

hAdapter: The network card object.

wMode: No use.

#### 6.2.50 Correction\_SetDoOffset2

The function is to do offset correction on acquisition image. It is "PRE Offset" calibration.

# ACQUIRE\_HEADER\_API void Correction\_SetDoOffset2(

HADNDLE hAdapter,

#### **BOOL** bDoOffset

);

Description of parameters:

hAdapter: The network card object.

bDoOffset: true: do offset correction.

false: do not do offset correction.

#### 6.2.51 Correction\_SetAutoOffset

The function is to do auto post of offset correction. It is "POST Offset" calibration.

#### ACQUIRE\_HEADER\_API INT Correction\_SetAutoOffset(

HADNDLE hAdapter,

#### **BOOL** bAutoOffset

);

Description of parameters:

hAdapter: The network card object.

bAutoOffset: true: do auto post offset.

false: do not do auto post offset.

#### 6.2.52 Correction\_SetDoGain

The function is to do gain correction on acquisition image.

#### ACQUIRE\_HEADER\_API void Correction\_SetDoGain(

#### HADNDLE hAdapter,

#### BOOL bDoGain

#### );

Description of parameters:

hAdapter: The network card object.

bDoGain: true: do gain correction.

false: do not do gain correction.

#### 6.2.53 Correction\_SetDoDefect

The function is to do defect correction on acquisition image.

#### ACQUIRE\_HEADER\_API void Correction\_SetDoDefect(

HADNDLE hAdapter,

**BOOL** bDoDefect

);

Description of parameters:

hAdapter: The network card object.

bDoDefect: true: do defect correction.

false: do not do defect correction.

#### 6.2.54 Correction\_GetDoOffsetStatus

The function is get status to do offset correction.

#### ACQUIRE\_HEADER\_API void Correction\_GetDoOffsetStatus(

HADNDLE hAdapter,

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.55 Correction\_GetDoGainStatus

The function is get status to do gain correction.

#### ACQUIRE\_HEADER\_API void Correction\_GetDoGainStatus(

#### HADNDLE hAdapter,

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.56 Correction\_GetDoDefectStatus

The function is get status to do defect correction.

#### ACQUIRE\_HEADER\_API void Correction\_GetDoDefectStatus(

#### HADNDLE hAdapter,

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.57 Acquisition\_QueryTemperature

The function is temperature command.

#### ACQUIRE\_HEADER\_API void Acquisition\_QueryTemperature (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.58 Acquisition\_QueryHumidity

The function is humidity command.

#### ACQUIRE\_HEADER\_API void Acquisition\_QueryHumidity (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.59 Acquisition\_QueryReadVersion

The function is read version command.

#### ACQUIRE\_HEADER\_API void Acquisition\_QueryReadVersion (

#### HANDLE hAdapter

);

Description of parameters:

hAdapter: The network card object.

#### 6.2.60 Acquisition\_GetTemperature

The function is get temperature value.

#### ACQUIRE\_HEADER\_API void Acquisition\_GetTemperature (

HANDLE hAdapter,

float &fTemperature

);

Description of parameters:

hAdapter: The network card object.

fTemperature: temperature value.

#### 6.2.61 Acquisition\_GetHumidity

The function is get humidity value.

#### ACQUIRE\_HEADER\_API void Acquisition\_GetHumidity (

HANDLE hAdapter,

float &fHumidity

);

Description of parameters:

hAdapter: The network card object.

fHumidity: humidity value.

#### 6.2.62 Acquisition\_GetReadVersion

The function is get read version number.

#### ACQUIRE\_HEADER\_API void Acquisition\_GetReadVersion (

HANDLE hAdapter,

WORD &wV1,

WORD &wV2,

WORD &wV3,

float &fReadVersion

);

Description of parameters:

hAdapter: The network card object.

wV1: Version 1.

wV2: Version 2.

wV3: Version 3.

fReadVersion: no use.

# 6.3 Demo illustration

Example: How to acquisition one frame image data by Gigabit Internet interface?

- 1. Initializing
- 1) Initializing the network card and uart port.

Acquisition\_ Initialize("com1");

2) Set the settings of uart port and other parameters

Acquisition\_SetCommDCB("baud=9600 parity=N data=8 stop=1");

//Get the list of NIC.

**GIGE\_ADAPTERNAMELIST\*** pList=Acquisition\_GigeGetAdapterList(); //Create the object of NIC.

Acquisition\_GigeCreateAdapterObject(pAdapterName,m\_hGigeAdapter);

3). Return the connection information of NIC.

Acquisition\_GigeAdapterIsConnected(PCHAR pAdapterName,BOOL &bConnect)

4). Set the callback function of image acquisition.

Acquisition\_GigeAdapterObjectSetImageCallback(m\_hGigeAdapter,pImag eCallback,pUser);

7). Set the callback function of Uart.

Acquisition\_SetComCallback(pStatusCallback, pUser);

#### 2. Start acquisition the image

1). Acquisition the dark image.

#### Acquisition\_StartAcquisition();

2). Acquisition the exposuring image.

#### 3. Unload

1). Unload the network card

#### Acquisition\_GigeDeleteAdapterObject(m\_hGigeAdapter);

2). Unload capture card and uart port

#### Acquisition\_Close();

#### 4. Acquisiton Mode

1). Set the trigger mode.
#### Acquisition\_SetDRConfigAecMode(wMode);

2). Get the trigger mode.

#### Acquisition\_GetDRConfigAecMode ();

3). Update the trigger mode.

Acquisition\_DRConfigUpdateAll ();

Others, please reference the source code of iDemo.

# 7. Chapter VII Service Information

### **Product lifetime**

The estimated product lifetime is up to 10 years under appropriate regular inspection and maintenance.

#### **Regular inspection and maintenance**

In order to ensure the safety of patients, operating personal and third parties, and to maintain the performance and reliability of the equipment, be sure to perform regular inspection at least once a year. If necessary, clean up the equipment, make adjustments, or replace consumables. There may be cases where overhaul is recommended depending on the conditions. Contact your sales representative or local iRay dealer for regular inspection or maintenance.

#### Repair

If a problem cannot be solved even taking the measures indicated in troubleshooting, contact your sales representative or local iRay dealer for repairs. Please refer to the name label and provide the following information:

Product Name: Venu-Serial Number: Description of Problem: In as much detail as possible.

#### **Replacement parts support**

Performance parts (parts required to maintain the functioning of the product) of this product will be stocked for 5 years after discontinuance of production, to allow for repair.

Replacement of fuses

# **Appendix A Installation of SDK**

The detector provides two interfaces for image acquisition. For using, user must install the relative software rightly.

#### A.1 Installation of Gigabit Ethernet Driver

In order to use the Gigabit Ethernet interface for data transfer, the use need to install the driver files WinPcap 4.1.2, this has been included in the CD-ROM.

| 🖶 WinPcap 4.1.2 Setup                                                        |         |  |
|------------------------------------------------------------------------------|---------|--|
| WinPcap 4.1.2 Installer<br>Welcome to the WinPcap 4.1.2 Installation Witzerd |         |  |
| This product is brought to you by                                            |         |  |
| Packet Capturing and Network Analysis Solutio                                | ns<br>V |  |
| Next >                                                                       | Cancel  |  |

Click "next" button to start installation.

|   | Press Page Down to see the rest of the agreement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 8 | <ul> <li>Copyright (c) 1999 - 2005 NetGroup, Politecnico di Torino (Italy).</li> <li>Copyright (c) 2005 - 2010 CACE Technologies, Davis (California).</li> <li>All rights reserved.</li> <li>Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:         <ol> <li>Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.</li> <li>Redistributions in binary form must reproduce the above copyright notice, this list of</li> </ol> </li> </ul> | ~ |
|   | conditions and the following disclaimer in the documentation and/or other materials<br>If you accept the terms of the agreement, click I Agree to continue. You must accept the<br>agreement to instal WinPcap 4.1.2.                                                                                                                                                                                                                                                                                                                                                                                            | ¥ |

Click the "I Agree" button to confirm with the license agreement.

| 🗑 WinPcap 4.1.2 Set             | tup                                                                                       |        |
|---------------------------------|-------------------------------------------------------------------------------------------|--------|
| WinPcap                         | Installation options<br>Please review the following options before installing Wi<br>4.1.2 | nPcap  |
|                                 |                                                                                           |        |
| Automatically start th          | e WinPcap driver at boot time                                                             |        |
|                                 |                                                                                           |        |
|                                 |                                                                                           |        |
|                                 |                                                                                           |        |
| Nulisoft Instell System v2.46 – |                                                                                           |        |
|                                 | <gack< td=""><td>Cancel</td></gack<>                                                      | Cancel |

Do not select the "Automatically start the WinPcap driver at boot time" item. The function will be loaded by the image acquisition software.

Ν

| 🗑 WinPcap 4.1.2 Setu | P T N                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Completing the WinPcap 4.1.2<br>Setup Wizard<br>WinPcap 4.1.2 has been installed on your computer.<br>Click Pinish to close this wizard. |
|                      | < gack <b>Enish</b> Cancel                                                                                                               |

Then installation completed

Important 

When use one new computer, user must set the settings of network card for working normally.

As figure, click "Configure" button of Local Area Connection Properties, set the value of Large Send Offload as Disabled, and the value of Speed & Duplex as 1.0 Gbps Full Duplex. Error settings may consult in abnormal of network connection.

#### Appendix A Installation of SDK

| enera  | al Advanced                                                                                                                | 1                                                                                                                                                                                                                                                  |                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Conn   | ect using                                                                                                                  |                                                                                                                                                                                                                                                    |                                                                                    |
| -      | Realtek PCIe GBE Family Controller                                                                                         | Configure                                                                                                                                                                                                                                          |                                                                                    |
| This c | connection uses the following items:                                                                                       |                                                                                                                                                                                                                                                    |                                                                                    |
|        | Client for Microsoft Networks                                                                                              |                                                                                                                                                                                                                                                    |                                                                                    |
| E P    | Realtek PCIe GBE Family Controlle                                                                                          | r Properties ? 🔀                                                                                                                                                                                                                                   |                                                                                    |
| <      | General Advanced About Driver R                                                                                            | esources Power Management                                                                                                                                                                                                                          |                                                                                    |
|        | The following properties are available for<br>the property you want to change on the le<br>on the right.                   | this network adapter. Click<br>eft, and then select its value                                                                                                                                                                                      |                                                                                    |
|        | Property:                                                                                                                  | Value:                                                                                                                                                                                                                                             |                                                                                    |
| 2      | 80/210/1p VLAN Tagging<br>Auto Disable PCIe<br>Auto Disable PHY<br>Checksum Offload<br>EEE                                 | Disabled                                                                                                                                                                                                                                           | oller Properties                                                                   |
|        | Flow Control<br>Green Ethernet                                                                                             | General Advanced About Driver                                                                                                                                                                                                                      | Resources Power Management                                                         |
|        | Jumbo Frame<br>Large Send Offload<br>Network Address<br>Shutdown Wake-On-Lan<br>Speed & Duplex<br>Wake-On-Lan Capabilities | The following properties are available<br>the property you want to change on t<br>on the right.<br><u>Property</u> :                                                                                                                               | e for this network adapter. Click<br>the left, and then select its value<br>Value: |
|        | WUL & Shutdown Link Speed                                                                                                  | 80210/19 VLAN Fagging<br>Auto Disable PCIe<br>Auto Disable PCIe<br>Auto Disable PHY<br>Checksum Offload<br>EEE<br>Flow Control<br>Green Ethernet<br>Jumbo Frame<br>Large Send Offload<br>Network Address<br>Shutdown Wake-On-Lan<br>Speed Scouplex | 1.0Gbps FullOuclex                                                                 |
|        | 20                                                                                                                         | WOL & Shutdown Link Speed                                                                                                                                                                                                                          | OK Cancel                                                                          |

# **Appendix B Information of Manufactures**

COMPANY: Shanghai iRay Technology Ltd. ADDRESS: Rm201, Building 7, No. 590, Ruiqing Rd, Zhangjiang East, Pudong New Area, Shanghai, China ZIPCODE: 201201 TELEPHONE: +86-21-50720560 FAX: +86-21-50720561 HOMEPAGE: WWW.IRAY-TECH.COM SERVICE: SERVICE DEPARTMENT of iRay SERVICE TEL: +86-21-50720560 MARKET TEL: +86-21-50720560

### 目录

| VENU1717                                                                                                                                                                                                            | 0       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| USER'S MANUAL                                                                                                                                                                                                       | 0       |
| TO CUSTOMERS                                                                                                                                                                                                        | 1       |
| IMPORTANT INFORMATION ON USAGE AND MANAGEMENT OF EQUIPMENT                                                                                                                                                          | 1       |
| DISCLAIMER                                                                                                                                                                                                          | 1       |
| ABOUT CE.                                                                                                                                                                                                           | 3       |
| VENU1717 IS ACCORDING TO THE STANDARD OF IEC 60601-1-1-2,<br>ELECTROMAGNETIC COMPATIBILITY –MEDICAL ELECTRICAL INSTRUMENT                                                                                           | 3       |
| THE DETECTOR CAN CONNECT TO PUBLIC MAINS AS DEFINED IN CISPR 11 (THE                                                                                                                                                |         |
| CLASS DEFINES GROUP 1 CLASS B)                                                                                                                                                                                      | 3       |
| ACCORDING TO CE TESTING, THE TEST STANDARDS SEE THE CHAPTER V:<br>REGULATORY INFORMATION                                                                                                                            | 3       |
| IF YOU WANT TO KNOW MORE INFORMATION, PLEASE CONNECT TO THE<br>PRODUCT OR IRAY'S AUTHORIZED AGENT                                                                                                                   | 3       |
| NOTE ON INSTALLATION                                                                                                                                                                                                | 3       |
| NOTE ON DISPOSAL OF THIS PRODUCT                                                                                                                                                                                    | 3       |
| ABOUT SERVICE INFORMATION                                                                                                                                                                                           | 3       |
| SYMBOLS                                                                                                                                                                                                             | 4       |
| THE LIST OF THE SYMBOLS USED IN THIS INSTRUMENT IS AS FOLLOWS:                                                                                                                                                      | 4       |
| SYMBOL FOR "CAUTION, CONSULT ACCOMPANYING DOCUMENTS".                                                                                                                                                               | 4       |
| A. THIS SYMBOL SHALL BE ACCOMPANIED BY THE MANUFACTURER'S SERIAL<br>NUMBER. THE SERIAL NUMBER SHALL BE AFTER OR BELOW THE SYMBOL,<br>ADJACENT TO IT                                                                 | 4       |
| B. THE RELATIVE SIZE OF THE SYMBOL AND THE SERIAL NUMBER ARE NOT<br>SPECIFIED.                                                                                                                                      | 4       |
| C. SO FAR OUR PRODUCT SERIAL NUMBER IS MADE OF SEVEN DIGITS, TWO DIGIT<br>FOR THE YEAR AND TWO DIGITS FOR THE MONTH AND THREE DIGITS FOR<br>SEQUENCE NUMBER. SO THE SERIAL NUMBER COULD BE SHOW THE DATE OF<br>MADE | CS<br>4 |
| A. THE SYMBOL SHALL BE ACCOMPANIED BY THE NAME AND THE ADDRESS OF<br>THE MANUFACTURER, ADJACENT TO THE SYMBOL. THE ADDRESS IS NOT<br>REQUIRED WITH THE SYMBOL ON AN IMMEDIATE CONTAINER AS SPECIFIED IN             |         |

| EN375 AND EN376, EXCEPT WHEN THE IMMEDIATE CONTAINER IS ALSO THE OUTER CONTAINER                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. THE RELATIVE SIZE OF THE SYMBOL AND THE NAME AND ADDRESS IS NOT SPECIFIED. 5                                                                                                                                                                                                                                                       |
| A. THE SYMBOL SHALL BE ACCOMPANIED BY THE NAME AND THE ADDRESS OF<br>THE AUTHORIZED REPRESENTATIVE IN THE EUROPEAN COMMUNITY, ADJACENT<br>TO THE SYMBOL. THE ADDRESS IS NOT REQUIRED WITH THE SYMBOL ON AN<br>IMMEDIATE CONTAINER AS SPECIFIED IN EN375 AND EN376, EXCEPT WHEN THE<br>IMMEDIATE CONTAINER IS ALSO THE OUTER CONTAINER |
| B. THE RELATIVE SIZE OF THE SYMBOL AND THE NAME AND ADDRESS IS NOT<br>SPECIFIED                                                                                                                                                                                                                                                       |
| SYMBOL FOR "CONSULT INSTRUCTIONS FOR USE", "CONSULT OPERATING<br>INSTRUCTIONS"                                                                                                                                                                                                                                                        |
| EQUIPOTENTIALITY, TO IDENTIFY THE TERMINALS WHICH, WHEN CONNECTED<br>TOGETHER, BRING THE VARIOUS PARTS OF AN EQUIPMENT OR OF A SYSTEM TO<br>THE SAME POTENTIAL. NOT NECESSARILY BEING THE EARTH (GROUND)<br>POTENTIAL. E.G. FOR LOCAL BONDING                                                                                         |
| TYPE B APPLIED PART, APPLIED PART COMPLYING WITH THE SPECIFIED<br>REQUIREMENTS OF EN IEC60601-1 TO PROVIDE PROTECTION AGAINST ELECTRIC<br>SHOCK, PARTICULARLY REGARDING ALLOWABLE PATIENT LEAKAGE CURRENT<br>AND PATIENT AUXILIARY CURRENT. 5                                                                                         |
| "ON" ( POWER )                                                                                                                                                                                                                                                                                                                        |
| "OFF" ( POWER )                                                                                                                                                                                                                                                                                                                       |
| PROTECTIVE EARTH CONDUCTOR (GROUND)                                                                                                                                                                                                                                                                                                   |
| TRADEMARKS                                                                                                                                                                                                                                                                                                                            |
| COPYRIGHT                                                                                                                                                                                                                                                                                                                             |
| CONTENTS                                                                                                                                                                                                                                                                                                                              |
| SAFETY NOTICES                                                                                                                                                                                                                                                                                                                        |
| 1. CHAPTER I SAFETY INFORMATION                                                                                                                                                                                                                                                                                                       |
| 1.1 Safety precautions       10         1.2 Notes for using the equipment       15                                                                                                                                                                                                                                                    |
| BEFORE EXPOSURE                                                                                                                                                                                                                                                                                                                       |
| DURING EXPOSURE                                                                                                                                                                                                                                                                                                                       |
| CLEANING15                                                                                                                                                                                                                                                                                                                            |
| 2. CHAPTER II GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                     |
| 2.1 Scope                                                                                                                                                                                                                                                                                                                             |

| 2.3 Characteristic                                 | 18 |
|----------------------------------------------------|----|
| 2.4 INTENDED USE                                   | 18 |
| 2.5 Standard configuration                         | 18 |
| 2.6 MAIN SPECIFICATIONS                            | 19 |
| 2.7 CLASSIFICATION OF THE EQUIPMENT                | 21 |
| 3.CHAPTER III INSTALLATION AND OPERATION           | 22 |
| 3.1 Quick Start                                    | 22 |
| 3.2 First Image Acquisition                        | 22 |
| 3.3 GAIN CORRECTION                                | 25 |
| 3.4 DEFECT CALIBRATION                             | 27 |
| 3.5 Acquire calibrated image                       | 27 |
| 4. CHAPTER IV CONTROL INTERFACE                    | 28 |
| 4.1 AC INPUT                                       | 28 |
| 4.2 Serial Port                                    | 28 |
| 4.3 GIGABIT ETHERNET PORT                          | 29 |
| 4.4 HVG INTERFACE                                  | 29 |
| 4.5 T-AEC Module                                   | 30 |
| 4.6 X-ray Image Acquisition                        | 30 |
| 4.7 Event                                          | 36 |
| 5.CHAPTER V REGULATORY INFORMATION                 | 38 |
| 5.1 Medical equipment safety standards             | 38 |
| 5.2 GUIDANCE AND MANUFACTURE'S DECLARATION FOR EMC | 39 |
| 6.CHAPTER VI IMAGING SOFTWARE SDK                  | 44 |
| 6.1Description of Library (IrayAcquireLib.lib)     | 44 |
| 6.2 DESCRIPTION OF FUNCTION:                       | 49 |
| 6.3 DEMO ILLUSTRATION                              | 70 |
| 7.CHAPTER VII SERVICE INFORMATION                  | 72 |
| PRODUCT LIFETIME                                   | 72 |
| REGULAR INSPECTION AND MAINTENANCE                 | 72 |
| REPAIR                                             | 72 |
| REPLACEMENT PARTS SUPPORT                          | 72 |
| APPENDIX A INSTALLATION OF SDK                     | 73 |
| APPENDIX B INFORMATION OF MANUFACTURES             |    |